Category Archive: Uncategorized

Polyurethane vs. Epoxy

Polyurethane vs. EpoxyAlthough many people use the terms polyurethane and epoxy interchangeably, they are actually two distinct types of coating with their own properties and advantages. As they are both hardwearing resin systems, each one functions well in busy plants or other facilities where physical impacts are common. However, with such a wide range of polyurethane and epoxy options to choose from, it may be challenging to find the best option for a given application. By understanding the differences between each one, you’ll easily be able to make a decision.

Epoxy Coatings

A major advantage of epoxies is their surface tolerance, as they can adhere extremely well to a variety of substrates. Depending on the intended application, manufacturers may choose any one of a number of epoxy options, each with its own specific properties. For example, an epoxy may be chemical resistant or fast setting.

Regardless of the specific epoxy, in general, this type of coating offers impressive amounts of durability and impact resistance, making it an ideal choice for either a primer/intermediate coat or a topcoat. Epoxies also offer the following significant benefits:

  • Ability to Bond To Concrete: In situations where a concrete substrate must receive a coating, epoxies can bind with it both chemically and mechanically.
  • Thick Build Coats: Thanks to their thickness, epoxy build coats are able to be self-level, and can create smooth surfaces by filling cracks and other small blemishes.
  • Long Term Durability and High Performance: Once treated with an epoxy resin, substrates will have a harder, more durable surface that provides good impact resistance.

Polyurethane Coatings

While epoxy coatings are hard and offer high amounts of impact resistance, polyurethane provides a softer option. It is more scratch-resistant and ideal for flexible substrates. Polyurethane’s flexibility also helps prevent concrete cracks from moving through the coating. Polyurethane has numerous advantages despite its thinner build coats, including:

  • UV Resistance
  • Impact and Abrasion Resistance
  • Gloss Retention
  • Color Stability

Polyurethane vs. Epoxy

Polyurethane and epoxy are both advantageous coating solutions, but they differ from one another in several key ways. First, these two types of coatings are different in cost. Polyurethanes will typically cost more than epoxy. In certain applications, polyurethane can be a more cost-effective solution.

Additionally, these two types of coatings offer benefits that serve different types of substrate. Epoxy offers higher levels of rigidity and adhesion than polyurethane, making it better suited for harder surfaces. In particular, manufacturers will often favor epoxies for the priming of concrete. Polyurethane, on the other hand, provides enhanced cosmetic performance characteristics that offer holistic protection for the entire system.

Industrial Epoxy Solutions From Copps Industries

For applications that require significant amounts of durability and high performance, epoxy resins are the ideal choice. Since 1979, Copps Industries has been dedicated to providing the finest industrial epoxies in the field. Throughout our decades of experience, we have successfully diversified our lineup to offer upwards of 500 products in 27 different countries. Markets we serve include:

  • Electronics
  • Civil Engineering
  • Structural Adhesives
  • Aggregate/Mining

We are dedicated to continually manufacturing products of the highest caliber at our ISO 9001:2015-certified facilities. Contact us or request your quote today to learn more about our epoxy resin solutions.

Ultra Clear Epoxy 101: Table Top Epoxy vs. Casting Epoxy

As a way of adding protection and gloss to items, ultra clear epoxies are widely used for bars, tabletops, river tables, jewelry, and much more. Epoxy resins are a popular product used for various applications. However, determining the best type of epoxy for your project can be difficult. 

Two common types of epoxies are table top epoxies and casting epoxies. While the two are very similar, they each have their unique properties and ideal uses. Regardless of the epoxy needed for your project, be sure to read and follow the manufacturer’s instructions because mistakes can have a huge impact on the final product. 

Table Top Epoxy vs. Casting Epoxy

Two of the most popular ultra clear epoxies are table top epoxy and casting epoxy. These two share similarities, but they are very different to work with and are meant for different applications.

Table Top Epoxy

Table Top EpoxyAs the name implies, table top epoxy is best for pouring over flat surfaces, such as table tops, bars, counters, or resin art. It is a self-leveling epoxy meant for thin pours in thicknesses of usually 1/4’’ or less. Pour thicknesses vary depending on the application, but it is important to note that using table top epoxy for embedding thick objects takes several applications and hours. 

With table top epoxy’s recommended 1:1 mixture, it is ideal for use by both beginners and professionals. The main advantages of table top epoxy over casting epoxy are its higher viscosity and faster cure time of 12-24 hours. 

Casting Epoxy

Casting EpoxyAlso referred to as deep pour resin, casting epoxy is used for thick pours of up to 2’’. Casting epoxy is commonly used for river tables, embedding and encasing objects, jewelry, and more. It offers a lower viscosity than table top epoxy and a slower cure rate of 24-36 hours. 

The longer cure time for casting epoxy allows for a longer working time, but care must be taken to prevent dust and debris from settling into the resin. The typical mixture for casting epoxies is 2:1, although some manufacturers have variations with a 1:1 or 3:1 ratio. 

Advantages of Ultra Clear Epoxies

There are several features of ultra clear epoxies that make them ideal for many applications. Advantages of using ultra clear epoxies in your project include:
Click to expand
Consumer Craft Epoxy Private Label

  • Blush Resistant. Even in high humidity conditions, ultra clear epoxy does not blush or sweat. 
  • High Gloss. The formula for ultra clear epoxy cures with a highly glossy and transparent finish. To achieve this polished appearance, it typically takes only three coats or less. 
  • Simplified Mix Ratios. Simple mix ratios make using ultra clear epoxies easier to measure and mix. This makes it preferred by many as it reduces the risk of minor errors that affect the final product. 
  • Tough Surfaces. Ultra clear epoxies are formulated to tough industrial standards, providing indestructible surfaces for your project. Epoxy results in long-lasting, maintenance-free surface protection that resists scratching, yellowing, and distortion.
  • Wood Adhesion. Ultra clear epoxies are the ideal solution for porous materials, helping protect the surface while accentuating the wood’s natural features. 

Copps Industries’ Ultra Clear Epoxies

At Copps Industries, we offer an ultra clear epoxy line made for your unique applications, from sealing a bar top to adding a gleam to objects. With our high-quality consumer epoxy products, we can meet your bulk order or private label needs.

The two primary varieties of ultra clear epoxy we feature are Ultra Clear Coat Table Top Epoxy and Ultra Clear Casting Epoxy. Our commercial-grade craft epoxies are self-leveling and create beautiful and clear finishes quickly and easily with superior physical properties. You can apply our ultra clear epoxies using foam brushes, rollers, or squeegees. 

From comprehensive sales and customer service to product development and technical support, Copps Industries is here to provide the best solutions for our customers. To learn more about our line of ultra clear epoxies, or to get started on your epoxy solution, contact us or request a quote today.

Applications of High-Temperature Epoxies

Epoxy resins adhere and cure on hard surfaces, providing a versatile polymer adhesive. Beyond their temperature-resistance capabilities, high-temperate epoxies feature many favorable qualities, including resistances to moisture, chemicals, impact, and corrosion. 

High-temperature epoxies maintain their properties even when exposed to extreme temperatures. Harsh industrial environments rely on high-temperature epoxy coatings over other adhesive types because of the improved heat resistance and durability they provide in severe operating conditions. This blog post will discuss the versatile nature of high-temperature epoxies and their uses across various industries. 

What is High-Temperature Epoxy?

For many applications, finding an appropriate high-temperature adhesive is vital for the success of the project. Manufacturers working in challenging environments often opt for a high-temperature epoxy resin, a specially formulated product that withstands temperatures up to 450°F and cures even in high-heat conditions. Other advantageous qualities of high-temperature epoxies include:

  • Durability
  • High abrasion resistance
  • Good clarity
  • Low viscosity
  • Thermal conductivity
  • Dimensional stability at high temperatures

These epoxy resins offer exceptional wetting characteristics when used in conjunction with aramid or carbon fiber. They display high degrees of chemical resistance and withstand steam exposure. Additionally, high-temperature epoxies are an ideal choice for encapsulation and potting, thanks to their thermal conductivity.

When the time comes to choose the appropriate adhesive for a project, it is essential to account for the expected operating temperature and the requirements for the product’s ultimate performance properties. Other vital considerations include:

  • Duration of exposure to high temperatures
  • The glass transition temperature of an adhesive
  • Coefficient of thermal expansion and bonded substrates

High-Temperature Epoxy Applications

(Click to Expand)

High-Temperature Epoxy Applications

The versatility of high-temperature epoxies makes them ideal for use in a wide range of industries, such as: 

  • Construction
  • Adhesives
  • Coatings
  • Composites
  • Electronics

They also provide excellent adhesion to many materials, including:

  • Plastics
  • Ceramics
  • Metals
  • Glass

High-temperature epoxies feature a versatile range of capabilities. Examples include:

  • Creating ultra-thin bond lines 
  • Superior protection and performance when bonding/coating electronic components
  • Protecting and sealing porous materials
  • Wet-lay laminating and vacuum-bagging of composite parts 
  • RIM tooling and vacuum forming
  • Bonding and encapsulation

Our High-Temperature Epoxy

As one of the industry’s leading providers of high-caliber, sustainable epoxies, Copps Industries designs and manufactures high-temperature epoxy resins suitable for use in various unique environments. We work closely with our customers to find the ideal solution for their application, improving results while reducing costs. 

Our product line contains two epoxy resins specifically designed for high-temperature use.

High-Temperature Ceramic Wear Compound K-037

Our High-Temperature Ceramic Wear Compound K-037 system is suitable for environments with temperatures up to 450°F. This ceramic-bead-filled, two-component epoxy system features strength, corrosion resistance, and abrasion resistance in severe service conditions.

REDBAC XTra Temp High-Performance Grout K-052

This epoxy system provides significant strength and chemical resistance, making it ideal for applications involving corrosive compounds. The REDBAC XTra Temp High-Performance Grout K-052 system maintains performance in temperatures up to 400°F. It can handle a wide range of challenging tasks, such as protecting concrete surfaces, grouting machine bases, and repairing damaged foundations.

High-Temperature Epoxy Solutions From Copps Industries

For over 40 years, Copps Industries has been designing high-quality, heat-resistant epoxy resins. With over 400 clients in industries ranging from electronics to civil engineering, our diverse product line contains solutions to meet any customer’s unique needs. We are ISO 9001:2015-certified and dedicated to producing sustainable and reliable resin solutions. 

To see how our high-temperature epoxy resins can improve your high-heat application, please contact us or request your quote today.

Selecting the Right Epoxy Resin for Your Application

Epoxy resin has many industrial applications and possesses greater thermal and chemical resistance – as well as strengthened mechanical properties – than other types of resin. When in liquid form, epoxy resin is poured into a mold or painted over a material in layers to create a protective outer coating. After curing, the material hardens into a solid and becomes durable and structurally stable. This combination of features makes epoxy resin extremely useful in a number of applications, from industrial tooling to art projects and automotive manufacturing

The specific combination of chemical compounds and polymerization processes will impact the resulting core characteristics of an epoxy resin formula.

Here are some of the trademark properties of epoxy resin formulas:

  • Heat-resistance
  • Chemical stability
  • Electrical insulation
  • Low moisture absorption
  • Durable adhesive bond
  • Anti-corrosive
  • Excellent fatigue strength and flexural strength
  • Low shrinkage after curing
  • Absence of VOCs (volatile organic compounds)

To begin the application process the epoxy resin is mixed with a co-reactant, also called a hardener, which typically comes in a separate compartment of the same package. The chemical reaction begins as soon as the two chemicals are mixed and depending on the formulation can become solid very quickly or slowly depending on your requirements.  The epoxy resin manufacturer should provide instructions about the ratio of epoxy to hardener that should be used to achieve maximum strength and performance.

What’s the Difference Between Casting and Coating Epoxy Resins?

Casting and coating epoxy resins are unique but related compounds. Choosing between the two will ultimately determine how the finished product will look and function.

Casting resins, also called “deep-pour resin” or “pouring plastic,” are used for clear encasings and suspensions. The user pours the material into a mold and then cures it to retain the same shape. Casting resins are commonly used to create crafts, jewelry, sculptures, and memorabilia. Manufacturers can also produce aggregate, molded plastics, or electrical insulation with casting resin. Engineers design automotive parts, aerospace devices, sports equipment, and hundreds of other products with compounds that are fortified with epoxy resin.

Coating resins, on the other hand, are aptly named: they are used to coat materials, such as metal, concrete, or wood, to make them stronger, chip-resistant, easier to clean, water-resistant, and rust-proof. A thin layer of coating resin can also glue materials together or preserve paper. In the electrical manufacturing sector, coating resins are applied to overmold circuits and transistors, which holds components together and protects against corrosion.

Beyond these differences in application, there are a few other notable distinctions between casting and coating epoxy resin:

(Click to Expand)

Selecting the Right Epoxy Resin for Your Application Grout

  • Viscosity: Casting resins are normally thinner compared to coating resin.
  • Curing Times: Because liquid casting resin is poured into thick layers, they take longer to cure to avoid shrinkage and heat build up..
  • Hardness: Coating resins are usually stiffer and harder than casting resins.
  • Mix Ratio: Most coating resins use a 1:1 ratio, but casting resin formulas can vary, such as 1:1 or 2:1.

Even though there are significant similarities between the two formula types, it’s usually easier to use the formula that’s best suited to your intended application.

If you pour casting resin on a surface instead of using a thin layer of coating resin, for example, the resin will run off the edges and will be very slow to harden.

Alternatively, if you pour coating epoxy into a mold, you’ll need to pour multiple thin layers and wait for the material to cure between applications. Otherwise, the heat generated from the material poured in a large mass will accelerate the chemical reaction and cause yellowing or cracking.

Key Questions to Consider About Epoxy Resin

If you are not sure what type of epoxy resin to opt for, consider the following:

  • How thick is the layer of epoxy you need for this project?
  • How long can you wait for the epoxy to cure?
  • Do you need a mold or frame to prevent dripping and hold the epoxy while it cures?
  • How hard does this material need to be to withstand the expected wear?
  • Do you want to suspend materials in the epoxy resin?
  • Do you need the epoxy to have any special properties?
  • Will this material be exposed to extreme temperatures, water, chemicals, UV rays, or other potentially damaging elements?

Epoxy resin systems can be tailor-made to suit unique project needs. Manufacturers use a variety of co-reactants, including, for example, polyfunctional amines, phenols, and alcohols all of which produce slightly different results. The type of base epoxy and additives in the formula can also change the resin’s viscosity and intrinsic properties.

Epoxy Resin Viscosity

Viscosity describes a liquid’s degree of resistance to flow. Within the context of epoxy resin formulas, the viscosity determines if the material will drip or spread evenly and if it should be poured, dipped, or painted on the material. Viscosity also affects how much of the epoxy perforates the substrate and which physical properties are produced.

For example, at Copps Industries, we manufacture three lines of epoxy resin with low, medium, or high viscosities:

  1. Low Viscosity

Low-viscosity epoxy resin is thin and works well for deep-level penetration and filling small cavities. The consistency helps prevent air bubbles, which facilitates bonding between the epoxy and substrate. You can use low-viscosity epoxy resin for encapsulation, sealing, and potting.

  1. Medium Viscosity

Medium-viscosity epoxy is thick. It’s less permeable than low-viscosity formulas and offers greater mechanical strength. The material can withstand moderately high temperatures and is often used for filament winding, vacuum bagging, and tooling.

  1. High Viscosity Epoxy

High-viscosity epoxy has a paste-like consistency and is the most resilient option. It offers superior adhesion and shock- and heat-resistance. Technicians use this formula for projects that demand exceptional durability and strength.

Epoxy Resin Solutions at Copps Industries

Copps Industries has been a leading provider of quality epoxy resin solutions for over four decades. Our formulations are thoroughly tested for quality assurance and have demonstrated practical applications in a broad range of industries. To learn more about epoxy resins or about our products and capabilities, reach out to us or request a quote today.

What To Look For In Oil & Gas Epoxy Grout

High-quality epoxy grouting solutions are critical for the secure installation and stabilization of on and offshore oil and gas exploratory equipment and structures. There are a wide range of epoxy grouts available that exceed the bond strength, chemical resistance, and alignment performance of more traditional cementitious grouts.

In this blog, we’ll cover the basics of epoxy grout, suitable applications, and selection considerations for the oil and gas industry.

What is Epoxy Grout?

The most simplified definition of epoxy grout is epoxy grout fills the void between steel and concrete in a structure or machinery mount to provide stabilization.

Epoxy grout has become an increasingly popular option for many applications. Epoxy grout is made from a two-part system containing an epoxy resin and a hardener with an engineered aggregate added to meet the desired specifications. Epoxy grout solutions offer several advantages over cement-based grouts.

Unlike cementitious grout, epoxy grout is non-porous, which makes it waterproof and highly resistant to stains, mildew, and mold. When cured, epoxy grout is extremely hard and durable. It can be formulated to withstand exposure to harsh chemicals without the need for a sealer, making it ideal for many industrial and commercial applications.

What to Look For in Oil & Gas Epoxy Grout

Compatible Oil & Gas Applications

Offshore oil and gas structures are designed with foundations that withstand the full forces of nature, including powerful ocean conditions.

Offshore structures are typically constructed with piled and grouted foundations. Pilings are driven through the legs of the structure and into the seabed, leaving a void between the piling and leg. The void is filled with grout, displacing the water. Once cured, the grout bonds the piling and leg together, resulting in a structure able to withstand the power of the ocean. The characteristics of epoxy grout make it an ideal choice for offshore applications.

Epoxy grout is also commonly used to mount and anchor heavy machinery and provide a secure and stable work surface for the equipment. Unlike traditional cement grout which may crack from vibrational impact, epoxy grout dissipates vibrations, ensuring that proper load transfer between the base and sole plate is maintained

Epoxy grout is also used to mount the sole plates that attach heavy equipment and machinery to the floor. Epoxy grout between these layers helps to transfer load forces while keeping the plates aligned, level, and stable. When properly installed, epoxy grout provides superior performance able to withstand heat, harsh chemicals, and stress better than cementitious grout.

Download Our eBook

Epoxy grouts are able to meet the stringent structural demands of onshore and offshore oil & gas equipment by providing superior bond strength, alignment performance, and chemical resistance relative to traditional cementitious grouts. Our eBook, A Complete Guide to Oil and Gas Epoxy Grouting Solutions, provides a comprehensive overview of epoxy grouts for oil & gas applications.

Learn More >

How to Choose an Oil & Gas Epoxy Grout

When choosing an epoxy grout for oil and gas applications, it is essential to select a type specially formulated with the following features:

  • Extreme environmental condition resistances, such as very high and very low temperatures
  • Fatigue resistance
  • Chemical resistance
  • Non-corrosiveness

Epoxy grout with these features will ensure long-lasting security, stability, and alignment.

At Copps Industries, we have several epoxy grout solutions formulated for common conditions encountered in oil and gas applications. For example:

  • X-TRA Temp High Performance Grout (K-052) is formulated for extreme high-temperature applications that require chemical resistance and durability. X-TRA Temp High Performance Grout has a service temperature of as high as 425° F with a very low mixed viscosity of 7,000 cP.
  • Low Temperature (K-026) is designed for cold weather applications, and allows for pouring in air temperatures between 25° F and 60° F, with a mixed viscosity of 20,000 cP at 40° F. Low Temperature (K-026) is an ideal grout for use in cold climates where outdoor pours are required.

An experienced manufacturer and distributor can assist you in selecting the most appropriate epoxy grout solution for your specific application. When sourcing epoxy grout for your project, ensure that you choose a provider who has an ISO 9001:2015 certification. Adherence to this standard ensures a product that was created under strict quality assurance procedures.

Oil & Gas Epoxy Grout Solutions at Copps Industries

At Copps Industries, we are committed to providing our clients with unparalleled service and the highest quality products available. We are an ISO 9001:2015 certified manufacturer and supplier of industrial-grade epoxy, offering a wide range of unique and proven formulated systems. We have been using innovative practices and cutting-edge technology to develop solutions that address complex challenges within a variety of industries since 1979.

To learn more about epoxy grout solutions for oil and gas applications, please reach out to us today.